欢迎进入无锡艾耐德自动化科技有限公司官网!

行业新闻

行业新闻

机器视觉的发展

     机器视觉的研究是从20世纪60年代中期美国学者L.R.罗伯兹关于理解多面体组成的积木世界研究开始的。当时运用的预处理、、构成、对象建模、匹配等技术,后来一直在机器视觉中应用。罗伯兹在图像分析过程中,采用了自底向上的方法。用边缘检测技术来确定轮廓线,用区域分析技术将图像划分为由灰度相近的像素组成的区域,这些技术统称为图像分割。其目的在于用轮廓线和区域对所分析的图像进行描述,以便同机内存储的模型进行比较匹配。实践表明,只用自底向上的分析太困难,必须同时采用自顶向下,即把目标分为若干子目标的分析方法,运用启发式知识对对象进行预测。这同言语理解中采用的自底向上和自顶向下相结合的方法是一致的。在图像理解研究中,A.古兹曼提出运用启发式知识,表明用符号过程来解廓画的方法不必求助于诸如匹配之类的数值计算程序。

70年代,机器视觉形成几个重要研究分支:①目标制导的图像处理;②图像处理和分析的并行算法;③从二维图像提取三维信息;④序列图像分析和求值;⑤视觉知识的表示;⑥视觉系统的知识库等。

机器视觉检测系统采用照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。机器视觉被称为的眼睛,在、及等领域都有着广泛的应用。

1. 安全可靠:视觉的最大优点是与被观测的对象无接触,因此对观测与被观测者都不会产生任何损伤,十分安全可靠,这是其他感觉方式无法比拟的。另外,人无法长时间地观察对象,机器视觉则不知疲劳,始终如一地观测,所以机器视觉可以广泛地用于长时间恶劣的工作环境。

2. 视觉范围广:理论上,人眼观察不到的范围,机器视觉也可以观察,例如红外线、微波、超声波等人类就观察不到,而机器视觉则可以利用这方面的敏感器件形成、、等图象。因此可以说是扩展了人类的视觉范围。

3. 对象选择范围广:视觉方式所能检测的对象十分广泛,可以说是对对象不加选择。在一些不适合于人工作业的危险工作环境或难以满足要求的场合,常用机器视觉来替代人工视觉。

4. 生产效率高:机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成。尤其是在大批量工业生产过程中,用人工视觉检查产品质量效率低且不高,用机器视觉检测方法可以大大提高和生产的自动化程度,易于实现。

一个典型的机器视觉系统包括以下五大块:


机器视觉光源

1. 照明(光源)
照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。


2. 镜头
FOV(FieldOfVision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)
镜头选择应注意:①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点/节点⑦畸变

3. 相机
工业相机作为机器视觉系统的关键组件,其最本质的功能就是将光信号转变成有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机的选择不仅直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。而工业相机按照不同的指标有诸多分类,以下是比较常见的分类:

高速相机


 (1)、按成像色彩划分,可分为彩色相机和黑白相机; 其中彩色相机有RGB格式(3CCD彩色相机)和Bayer格式(单CCD彩色相机)等;

( 2)、按灵敏度划分,又分为普通型、星光型、月光型、红外型

(3)、按分辨率划分,像素数在38万以下的为普通型,像素数在38万以上的高分辨率型;

(4)、按光敏面尺寸大小划分,可分为1/4、1/3、1/2、1英寸相机。

(5)、按扫描方式划分,可分为行扫描相机(线阵相机)和面扫描相机(面阵相机)两种方式;(面扫描相机又可分为隔行扫描相机和逐行扫描相机)

(6)、按同步方式划分,可分为普通相机(内同步)和具有外同步功能的相机等。

4. 
图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。

比较典型的是或兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。

5.视觉处理器
视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集卡可以快速传输图像到存储器,而且计算机也快多了,所以现在视觉处理器用的较少了。

视觉系统的应用

机器视觉的应用主要有检测和两个方面:

1. 检测:又可分为高精度定量检测(例如显微照片的细胞分类、机械零部件的尺寸和位置测量)和不用量器的定性或半定量检测(例如产品的外观检查、装配线上的零部件识别定位、缺陷性检测与装配完全性检测)。

2. 机器人视觉:用于指引机器人在大范围内的操作和行动,如从料斗送出的杂乱工件堆中拣取工件并按一定的方位放在传输带或其他设备上(即料斗拣取问题,需

一、、水温表、、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。检测项目包括:检测速度表等五个仪表指针的指示;检测24个信号报警灯和若干照明9灯是否损坏或漏装。一般采用人工目测方法检查,误差大,可靠性差,不能满足自动化生产的需要。基于机器视觉的智能集成测试系统,改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速质量检测,克服了人工检测所造成的各种误差,大大提高了检测效率。

整个系统分为四个部分:为仪表板提供模拟信号源的集成化多路标准信号源、具有图像信息反馈定位的双坐标CNC系统、摄像机图像获取系统和主从机平行处理系统。

2. 金属板表面自动控伤系统
金属板如大型电力线圈扁平线收音机朦胧皮等的表面质量都有很高的要求,但原始的采用人工目视或用百分表加控针的检测方法不仅易受主观因素的影响,而且可能会绘被测表面带来新的划伤。金属板表面自动探伤系统利用机器视觉技术对金属表面缺陷进行自动检查,在生产过程中高速、准确地进行检测,同时由于采用非接角式测量,避免了产生新划伤的可能。其工作原理图如图8-6所示;在此系统中,采用激光器作为光源,通过滤除激光束周围的杂散光,扩束镜和准直镜使激光束变为平行光并以45度的入射角均匀照明被检查的金属板表面。金属板放在检验台上。检验台可在X、Y、Z三个方向上移动,摄像机采用TCD142D型2048线陈CCD,镜头采用普通照相机镜头。CCD接口电路采用单片机系统。主机PC机主要完成图像预处理及缺陷的分类或划痕的深度运算等,并可将检测到的缺陷或划痕图像在上显示。CCD接口电路和PC机之间通过RS-232口进行双向通讯,结合异步汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系统用于工业检测中的一个较为典型的例子,该系统由62个测量单元组成,每个测量单元包括一台激光器和一个CCD摄像机,用以检测车身外壳上288个测量点。汽车车身置于测量框架下,通过软件校准车身的精确位置。

测量单元的校准将会影响检测精度,因而受到特别重视。每个激光器/摄像机单元均在离线状态下经过校准。同时还有一个在离线状态下用三坐标测量机校准过的校准装置,可对摄像顶进行在线校准。

检测系统以每40秒检测一个车身的速度,检测三种类型的车身。系统将检测结果与人、从CAD模型中撮出来的合格尺寸相比较,测量精度为±0.1mm。 ROVER的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、门、玻璃窗口等。实践证明,该系统是成功的,并将用于ROVER公司其它系统列汽车的车身检测。

4. 纸币印刷质量检测系统:
该系统利用图像处理技术,通过对纸币生产流水线上的纸币20多项特征(号码、盲文、颜色、图案等)进行比较分析,检测纸币的质量,替代传统的人眼辨别的方法。

5. 瓶装啤酒生产流水线检测系统:
可以检测啤酒是否达到标准的容量、啤酒标签是否完整、酒瓶外观裂纹检测、酒瓶内壁异物检测及酒液异物检测。

二、,当有违章车辆(如闯红灯)时,摄像头将车辆的牌照拍摄下来,传输给中央管理系统,系统利用图像处理技术,对拍摄的图片进行分析,提取出车牌号,存储在数据库中,可以供管理人员进行检索。

2. :
金相图象分析系统能对金属或其它材料的基体组织、杂质含量、组织成分等进行精确、客观地分析,为产品质量提供可靠的依据。

西门子机器视觉系统在医疗机械的应用

3. 医疗图像分析:
血液细胞自动分类计数、分析、、测量仪:
采用激光扫描与CCD探测系统的大型工件平行度、,它以稳定的准直激光束为,配以回转轴系,旋转五角标棱镜扫出互相平行或垂直的基准平面,将其与被测大型工件的各面进行比较。在加工或安装大型工件时,可用该认错器测量面间的平行度及垂直度。

2. 螺纹钢外形轮廓尺寸的探测器件:
以频闪光作为照明光源,利用面陈和线陈CCD作为螺纹钢外形轮廓尺寸的探测器件,实现热轧钢几何参数在线测量的动态检测系统。

3. 实时监控:
视觉技术实时监控轴承的负载和温度变化,消除过载和过热的危险。将传统上通过测量滚珠表面保证加工质量和安全操作的被动式测量变为主动式监控。

4. 金属表面的裂纹测量:
用微波作为信号源,根据微波发生器发出不同波涛率的方波,测量金属表面的裂纹,微波的波的频率越高,可测的裂纹越狭小。

四、

由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。

但是机器视觉技术比较复杂,最大的困难在于人的视觉机制尚不清楚。人可以用内省法描述对某一问题的解题过程,从而用计算机加以。但尽管每一个正常人都是“视觉专家”,却不可能用来描述自己的视觉过程。因此建立机器视觉系统是十分困难的任务。

可以预计的是,随着机器视觉技术自身的成熟和发展,它将在现代和未来制造企业中得到越来越广泛的应用。